Source code for data_juicer.ops.mapper.detect_character_attributes_mapper

import json
import os
import random
from typing import Dict, Optional

from PIL import Image

import data_juicer
from data_juicer.ops.load import load_ops
from data_juicer.utils.cache_utils import DATA_JUICER_ASSETS_CACHE
from data_juicer.utils.constant import Fields

from ..base_op import OPERATORS, TAGGING_OPS, UNFORKABLE, Mapper
from ..op_fusion import LOADED_IMAGES

OP_NAME = "detect_character_attributes_mapper"


[docs] @UNFORKABLE.register_module(OP_NAME) @TAGGING_OPS.register_module(OP_NAME) @OPERATORS.register_module(OP_NAME) @LOADED_IMAGES.register_module(OP_NAME) class DetectCharacterAttributesMapper(Mapper): """Takes an image, a caption, and main character names as input to extract the characters' attributes. Extracts and classifies attributes of main characters in an image using a combination of object detection, image-text matching, and language model inference. It first locates the main characters in the image using YOLOE and then uses a Hugging Face tokenizer and a LLaMA-based model to classify each character into categories like 'object', 'animal', 'person', 'text', or 'other'. The operator also extracts detailed features such as color, material, and action for each character. The final output includes bounding boxes and a list of characteristics for each main character. The results are stored in the 'main_character_attributes_list' field under the 'meta' key.""" _accelerator = "cuda"
[docs] def __init__( self, detect_character_locations_mapper_args: Optional[Dict] = {}, *args, **kwargs, ): """ Initialization method. :param detect_character_locations_mapper_args: Arguments for detect_character_locations_mapper_args. Controls the threshold for locating the main character. Default empty dict will use fixed values: default mllm_mapper_args, default image_text_matching_filter_args, yoloe_path="yoloe-11l-seg.pt", iou_threshold=0.7, matching_score_threshold=0.4, """ super().__init__(*args, **kwargs) self.FIXED_ARGS = {} self.FIXED_ARGS["detect_character_locations_mapper"] = { "mllm_mapper_args": { "max_new_tokens": 256, "temperature": 0.2, "top_p": None, "num_beams": 1, "hf_model": "llava-hf/llava-v1.6-vicuna-7b-hf", }, "image_text_matching_filter_args": { "min_score": 0, "max_score": 1.0, "hf_blip": "Salesforce/blip-itm-base-coco", "num_proc": 1, }, "yoloe_path": "yoloe-11l-seg.pt", "iou_threshold": 0.7, "matching_score_threshold": 0.4, } self.detect_character_locations_mapper_args = self._prepare_op_args( "detect_character_locations_mapper", detect_character_locations_mapper_args ) self.fused_op_list = [{"detect_character_locations_mapper": self.detect_character_locations_mapper_args}] self.fused_ops = load_ops(self.fused_op_list) accelerator_methods = set([op.accelerator for op in self.fused_ops]) if "cuda" in accelerator_methods: self.accelerator = "cuda" # update num_proc with the min num_proc of all fusible filters self.num_proc = min([op.runtime_np() for op in self.fused_ops]) if self.fused_ops else 1
def _prepare_op_args(self, op_name, args_dict): for key in self.FIXED_ARGS[op_name]: if key not in args_dict: args_dict[key] = self.FIXED_ARGS[op_name][key] args_dict["accelerator"] = self.accelerator return args_dict
[docs] def process_single(self, samples, rank=None): if Fields.meta not in samples: samples[Fields.meta] = {} detect_location_dataset = data_juicer.core.NestedDataset.from_list( [{"main_character_list": samples["main_character_list"], "images": samples["images"]}] ) character_locations = detect_location_dataset.map( self.fused_ops[0].process, num_proc=1, with_rank=True ).to_list() character_locations = character_locations[0][Fields.meta]["main_character_locations_list"] character_to_characteristics = {} character_to_cls = {} for temp_character in samples["main_character_list"]: # detect class prompt = ( 'Please classify the character "' + temp_character + "\" into the following categories: ['object', 'animal', 'person', 'text', 'other']. Only reply with the most fitting single category." ) mllm_sample = {"text": prompt, "images": samples["images"]} output_text = self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() character_to_cls[temp_character] = output_text # detect feature prompt = ( 'I will provide you with the corresponding description of an image, as follows: "' + samples["text"] + "\" Please extract all descriptions of the features related to '" + temp_character + '\' from this text, which may include color, material, action, and other typical features, and compile them into a list of phrase string. Formatted like: ["in a blue shirt", "sitting on a nearby fence", "with flame decals"]. Return only the phrase string list.' ) mllm_sample = {"text": prompt, "images": samples["images"]} output_text = self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() try: character_to_characteristics[temp_character] = json.loads(output_text) except json.JSONDecodeError: character_to_characteristics[temp_character] = [output_text] image = Image.open(samples["images"][0]) valid_character_in_bbox_dict = {} for temp_character_with_bbox_idx, temp_character_with_bbox in enumerate(character_locations): crop_img = image.crop(temp_character_with_bbox["bbox"]) cache_img_name = ( "temp_" + str(random.randint(0, 9999)) + "_" + str(temp_character_with_bbox_idx) + samples["images"][0].split("/")[-1] ) cache_img_path = os.path.join( DATA_JUICER_ASSETS_CACHE, cache_img_name, ) crop_img.save(cache_img_path) try: temp_character_cls = character_to_cls[temp_character_with_bbox["main_character"]] except Exception: os.remove(cache_img_path) continue if "object" in temp_character_cls: prompt = ( "Please analyze the key characteristics of the main object in this image, specifically the '" + temp_character_with_bbox["main_character"] + "', which may include color, material, shape, and other typical features. Currently identified characteristics include \"" + str(temp_character_cls) + '". Please expand this list and respond in an identically formatted phrase string list.' ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() ) elif "animal" in temp_character_cls: prompt = ( "Please analyze the key characteristics of the primary animal in this image, specifically the '" + temp_character_with_bbox["main_character"] + "', which may include color, action, and other typical features. Currently identified characteristics include \"" + str(temp_character_cls) + '". Please expand this list and respond in an identically formatted phrase string list.' ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() ) elif "person" in temp_character_cls: prompt = ( "Please analyze the key characteristics of the primary person in this image, specifically the '" + temp_character_with_bbox["main_character"] + "', which may include clothing, ages, and other typical features. Currently identified characteristics include \"" + str(temp_character_cls) + '". Please expand this list and respond in an identically formatted phrase string list.' ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() ) else: prompt = ( "Please analyze the key characteristics of the primary character in this image, specifically the '" + temp_character_with_bbox["main_character"] + "'. Currently identified characteristics include \"" + str(temp_character_cls) + '". Please expand this list and respond in an identically formatted phrase string list.' ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0].fused_ops[0].process(mllm_sample)["text"][0].split("ASSISTANT:")[-1].strip() ) final_characteristic_list = [] # filter try: characteristic_list = json.loads(output_text) except json.JSONDecodeError: characteristic_list = output_text if isinstance(characteristic_list, list): if len(characteristic_list) == 1: characteristic_list = characteristic_list[0].replace("_", " ").split(", ") try: for temp_characteristic in characteristic_list: prompt = ( 'Please analyze the main character in this image, specifically the "' + temp_character_with_bbox["main_character"] + '". Is "' + temp_characteristic + "\" one of its features? Only respond with 'yes' if it is a perfect match. Please only respond with 'yes' or 'no'." ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0] .fused_ops[0] .process(mllm_sample)["text"][0] .split("ASSISTANT:")[-1] .strip() ) if "yes" in output_text: final_characteristic_list.append(temp_characteristic) except Exception: os.remove(cache_img_path) continue else: try: characteristic_list = output_text.split("\n") if len(characteristic_list) == 1: characteristic_list = characteristic_list[0].replace("_", " ").split(", ") for temp_characteristic in characteristic_list: prompt = ( 'Please analyze the main character in this image, specifically the "' + temp_character_with_bbox["main_character"] + '". Is "' + temp_characteristic + "\" one of its features? Only respond with 'yes' if it is a perfect match. Please only respond with 'yes' or 'no'." ) mllm_sample = {"text": prompt, "images": [cache_img_path]} output_text = ( self.fused_ops[0] .fused_ops[0] .process(mllm_sample)["text"][0] .split("ASSISTANT:")[-1] .strip() ) if "yes" in output_text: final_characteristic_list.append(temp_characteristic) except Exception: os.remove(cache_img_path) continue valid_character_in_bbox_dict[temp_character_with_bbox["main_character"]] = {} valid_character_in_bbox_dict[temp_character_with_bbox["main_character"]]["bbox"] = temp_character_with_bbox[ "bbox" ] valid_character_in_bbox_dict[temp_character_with_bbox["main_character"]][ "final_characteristic_list" ] = final_characteristic_list os.remove(cache_img_path) new_character_list = [] for temp_character in samples["main_character_list"]: temp_character_json = {} temp_character_json["main_character"] = temp_character if temp_character in valid_character_in_bbox_dict: temp_character_json["bbox"] = valid_character_in_bbox_dict[temp_character]["bbox"] if len(valid_character_in_bbox_dict[temp_character]["final_characteristic_list"]) == 0: temp_character_json["characteristic_list"] = character_to_characteristics[temp_character] else: temp_character_json["characteristic_list"] = valid_character_in_bbox_dict[temp_character][ "final_characteristic_list" ] else: temp_character_json["bbox"] = [] temp_character_json["characteristic_list"] = character_to_characteristics[temp_character] new_character_list.append(temp_character_json) samples[Fields.meta]["main_character_attributes_list"] = new_character_list return samples