Source code for data_juicer.ops.mapper.generate_qa_from_examples_mapper

import json
import random
import re
from typing import Dict, Optional

from loguru import logger
from pydantic import PositiveInt

from data_juicer.utils.lazy_loader import LazyLoader
from data_juicer.utils.model_utils import (
    get_model,
    prepare_model,
    update_sampling_params,
)
from data_juicer.utils.ray_utils import is_ray_mode

from ..base_op import OPERATORS, Mapper

torch = LazyLoader("torch")
vllm = LazyLoader("vllm")
rouge = LazyLoader("rouge")

OP_NAME = "generate_qa_from_examples_mapper"


# TODO: Extend LLM-based OPs into API-based implementation.
[docs] @OPERATORS.register_module(OP_NAME) class GenerateQAFromExamplesMapper(Mapper): """Generates question and answer pairs from examples using a Hugging Face model. This operator generates QA pairs based on provided seed examples. The number of generated samples is determined by the length of the empty dataset configured in the YAML file. The operator uses a Hugging Face model to generate new QA pairs, which are then filtered based on their similarity to the seed examples. Samples with a similarity score below the specified threshold are kept. The similarity is computed using the ROUGE-L metric. The operator requires a seed file in chatml format, which provides the initial QA examples. The generated QA pairs must follow specific formatting rules, such as maintaining the same format as the input examples and ensuring that questions and answers are paired correctly.""" DEFAULT_SYSTEM_PROMPT = ( "่ฏทไฝ ไป”็ป†่ง‚ๅฏŸๅคšไธช็คบไพ‹ๆ•ฐๆฎ็š„่พ“ๅ…ฅๅ’Œ่พ“ๅ‡บ๏ผŒๆŒ‰็…งไฝ ็š„็†่งฃ๏ผŒๆ€ป็ป“ๅ‡บ็›ธๅบ”่ง„็Ÿฉ๏ผŒ็„ถๅŽๅ†™ๅ‡บไธ€ไธชๆ–ฐ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ใ€‚" "ๆณจๆ„๏ผŒๆ–ฐ็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘้œ€่ฆๆปก่ถณๅฆ‚ไธ‹่ฆๆฑ‚๏ผš\n" "1. ็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ไธ่ƒฝไธŽ่พ“ๅ…ฅ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ไธ€่‡ด๏ผŒไฝ†ๆ˜ฏ้œ€่ฆไฟๆŒๆ ผๅผ็›ธๅŒใ€‚\n" "2. ็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ไธไธ€ๅฎš่ฆๅฑ€้™ไบŽ่พ“ๅ…ฅใ€้—ฎ้ข˜ใ€‘็š„่ฏ้ข˜ๆˆ–้ข†ๅŸŸ๏ผŒ็”Ÿๆˆ็š„ใ€ๅ›ž็ญ”ใ€‘้œ€่ฆๆญฃ็กฎๅ›ž็ญ”็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ใ€‚\n" "3. ๆไพ›็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ๅฏ่ƒฝๆ˜ฏๅคš่ฝฎๅฏน่ฏ๏ผŒ็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ไนŸๅฏไปฅๆ˜ฏๅคš่ฝฎ๏ผŒไฝ†ๆ˜ฏ้œ€่ฆไฟๆŒๆ ผๅผ็›ธๅŒใ€‚\n" "4. ็”Ÿๆˆ็š„ใ€้—ฎ้ข˜ใ€‘ๅ’Œใ€ๅ›ž็ญ”ใ€‘ๅฟ…้กปๆˆๅฏนๅ‡บ็Žฐ๏ผŒ่€Œไธ”ใ€้—ฎ้ข˜ใ€‘้œ€่ฆๅœจใ€ๅ›ž็ญ”ใ€‘ไน‹ๅ‰ใ€‚\n" ) DEFAULT_INPUT_TEMPLATE = "{}" DEFAULT_EXAMPLE_TEMPLATE = "\nๅฆ‚ไธ‹ๆ˜ฏไธ€ๆก็คบไพ‹ๆ•ฐๆฎ๏ผš\n{}" DEFAULT_QA_PAIR_TEMPLATE = "ใ€้—ฎ้ข˜ใ€‘\n{}\nใ€ๅ›ž็ญ”ใ€‘\n{}\n" DEFAULT_OUTPUT_PATTERN = r"ใ€้—ฎ้ข˜ใ€‘(.*?)ใ€ๅ›ž็ญ”ใ€‘(.*?)(?=ใ€้—ฎ้ข˜ใ€‘|$)" _accelerator = "cuda"
[docs] def __init__( self, hf_model: str = "Qwen/Qwen2.5-7B-Instruct", *, seed_file: str = "", example_num: PositiveInt = 3, similarity_threshold: float = 0.7, system_prompt: Optional[str] = None, input_template: Optional[str] = None, example_template: Optional[str] = None, qa_pair_template: Optional[str] = None, output_pattern: Optional[str] = None, enable_vllm: bool = False, model_params: Optional[Dict] = None, sampling_params: Optional[Dict] = None, **kwargs, ): """ Initialization method. :param hf_model: Huggingface model ID. :param seed_file: Path to the seed file in chatml format. :param example_num: The number of selected examples. Randomly select N examples from "seed_file" and put them into prompt as QA examples. :param similarity_threshold: The similarity score threshold between the generated samples and the seed examples. Range from 0 to 1. Samples with similarity score less than this threshold will be kept. :param system_prompt: System prompt for guiding the generation task. :param input_template: Template for building the input prompt. It must include one placeholder '{}', which will be replaced by `example_num` formatted examples defined by `example_template`. :param example_template: Template for formatting one QA example. It must include one placeholder '{}', which will be replaced by one formatted qa_pair. :param qa_pair_template: Template for formatting a single QA pair within each example. Must include two placeholders '{}' for the question and answer. :param output_pattern: Regular expression pattern to extract questions and answers from model response. :param enable_vllm: Whether to use vllm for inference acceleration. :param model_params: Parameters for initializing the model. :param sampling_params: Sampling parameters for text generation. e.g {'temperature': 0.9, 'top_p': 0.95} :param kwargs: Extra keyword arguments. """ super().__init__(**kwargs) if not seed_file: raise ValueError( "Please provide `seed_file` in chatml format." "Example: data-juicer/demos/data/demo-dataset-chatml.jsonl" ) self.seed_file = seed_file self.example_num = example_num self.similarity_threshold = similarity_threshold self.similarity_type = "rouge_l" self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT self.input_template = input_template or self.DEFAULT_INPUT_TEMPLATE self.example_template = example_template or self.DEFAULT_EXAMPLE_TEMPLATE # noqa: E501 self.qa_pair_template = qa_pair_template or self.DEFAULT_QA_PAIR_TEMPLATE self.output_pattern = output_pattern or self.DEFAULT_OUTPUT_PATTERN self.enable_vllm = enable_vllm model_params = model_params or {} sampling_params = sampling_params or {} sampling_params = update_sampling_params(sampling_params, hf_model, self.enable_vllm) if enable_vllm: if not is_ray_mode(): # cannot initialize vllm replicas on different GPUs self.num_proc = 1 self.model_key = prepare_model(model_type="vllm", pretrained_model_name_or_path=hf_model, **model_params) self.sampling_params = vllm.SamplingParams(**sampling_params) else: self.model_key = prepare_model( model_type="huggingface", pretrained_model_name_or_path=hf_model, return_pipe=True, **model_params ) self.sampling_params = sampling_params self.seed_qa_samples = self._load_seed_qa_samples() if len(self.seed_qa_samples) == 0: raise ValueError("No QA data was parsed from the seed file!")
def _load_seed_qa_samples(self): """Load QA pairs from chatml format file.""" qa_samples = [] with open(self.seed_file, encoding="utf-8") as f: lines = f.readlines() for line in lines: line = line.strip() qa_pairs = self._parse_chatml_str(line) if len(qa_pairs) > 0: qa_samples.append(qa_pairs) return qa_samples def _sample_to_str(self, qa_sample): return "\n".join(["\n".join(qa_pair) for qa_pair in qa_sample]) + "\n" def _max_rouge_l_score(self, hypothesis, references): r = rouge.Rouge() max_score = 0.0 hyp_str = self._sample_to_str(hypothesis) for reference in references: ref_str = self._sample_to_str(reference) scores = r.get_scores(hyp_str, ref_str) rouge_l_score = scores[0]["rouge-l"]["f"] if rouge_l_score > max_score: max_score = rouge_l_score return max_score def _parse_chatml_str(self, sample_str): user_input = None assistant_output = None qa_pairs = [] data = json.loads(sample_str) for message in data["messages"]: role = message["role"] content = message["content"] if role == "user": user_input = content elif role == "assistant": assistant_output = content qa_pairs.append((user_input, assistant_output)) return qa_pairs
[docs] def build_input(self, qa_examples): def format_qa_pairs(qa_example): return "".join([self.qa_pair_template.format(q, a) for q, a in qa_example if q and a]) formatted_examples = "".join( [self.example_template.format(format_qa_pairs(qa_example)) for qa_example in qa_examples] ) input_prompt = self.input_template.format(formatted_examples) return input_prompt
[docs] def parse_output(self, raw_output): logger.debug(raw_output) output_qa_pairs = [] matches = re.findall(self.output_pattern, raw_output, re.DOTALL) for match in matches: question, answer = match output_qa_pairs.append((question.strip(), answer.strip())) return output_qa_pairs
[docs] def process_single(self, sample, rank=None): model, _ = get_model(self.model_key, rank, self.use_cuda()) random_qa_samples = random.sample(self.seed_qa_samples, self.example_num) input_prompt = self.build_input(random_qa_samples) messages = [{"role": "system", "content": self.system_prompt}, {"role": "user", "content": input_prompt}] if self.enable_vllm: response = model.chat(messages, self.sampling_params) output = response[0].outputs[0].text else: # model is pipe response = model(messages, return_full_text=False, **self.sampling_params) output = response[0]["generated_text"] output_qa_pairs = self.parse_output(output) if len(output_qa_pairs) == 0: logger.warning("Parse model response error! " "No data generated for the current response!") sample.update({self.query_key: "", self.response_key: "", self.history_key: self.empty_history()}) return sample if self.similarity_type == "rouge_l": sim_score = self._max_rouge_l_score(output_qa_pairs, random_qa_samples) else: raise ValueError(f'Not support similarity type "{self.similarity_type}"!') if sim_score <= self.similarity_threshold: query, response = output_qa_pairs[-1] history = output_qa_pairs[:-1] if len(history) == 0: history = self.empty_history() else: query = response = "" history = self.empty_history() logger.info("Filter this generated sample due to similarity.") sample.update({self.query_key: query, self.response_key: response, self.history_key: history}) return sample