data_juicer.ops.pipeline#
- class data_juicer.ops.pipeline.LLMRayVLLMEnginePipeline(api_or_hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', is_hf_model: bool = True, *, system_prompt: str | None = None, accelerator_type: str | None = None, sampling_params: Dict | None = None, engine_kwargs: Dict | None = None, api_url: str = None, api_key: str = None, **kwargs)[source]#
Bases:
RayVLLMEnginePipelinePipeline to generate response using vLLM engine on Ray. This pipeline leverages the vLLM engine for efficient large language model inference. More details about ray vLLM engine can be found at: https://docs.ray.io/en/latest/data/working-with-llms.html
- __init__(api_or_hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', is_hf_model: bool = True, *, system_prompt: str | None = None, accelerator_type: str | None = None, sampling_params: Dict | None = None, engine_kwargs: Dict | None = None, api_url: str = None, api_key: str = None, **kwargs)[source]#
Initialization method.
- Parameters:
api_or_hf_model – API or huggingface model name.
system_prompt – System prompt for guiding the optimization task.
accelerator_type – The type of accelerator to use (e.g., “V100”, “A100”). Default to None, meaning that only the CPU will be used.
sampling_params – Sampling parameters for text generation (e.g., {‘temperature’: 0.9, ‘top_p’: 0.95}).
engine_kwargs – The kwargs to pass to the vLLM engine. See documentation for details: https://docs.vllm.ai/en/latest/api/vllm/engine/arg_utils/#vllm.engine.arg_utils.AsyncEngineArgs.
api_url – Base URL of the OpenAI API
api_key – API key for authentication
kwargs – Extra keyword arguments.
- static preprocess_fn(row: Dict, query_key: str, system_prompt: str | None, sampling_params: Dict) Dict[source]#
- class data_juicer.ops.pipeline.VLMRayVLLMEnginePipeline(api_or_hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', is_hf_model: bool = True, *, system_prompt: str | None = None, accelerator_type: str | None = None, sampling_params: Dict | None = None, engine_kwargs: Dict | None = None, **kwargs)[source]#
Bases:
RayVLLMEnginePipelinePipeline to generate response using vLLM engine on Ray. This pipeline leverages the vLLM engine for efficient large vision language model inference. More details about ray vLLM engine can be found at: https://docs.ray.io/en/latest/data/working-with-llms.html
- __init__(api_or_hf_model: str = 'Qwen/Qwen2.5-7B-Instruct', is_hf_model: bool = True, *, system_prompt: str | None = None, accelerator_type: str | None = None, sampling_params: Dict | None = None, engine_kwargs: Dict | None = None, **kwargs)[source]#
Initialization method.
- Parameters:
api_or_hf_model – API or huggingface model name.
system_prompt – System prompt for guiding the optimization task.
accelerator_type – The type of accelerator to use (e.g., “V100”, “A100”). Default to None, meaning that only the CPU will be used.
sampling_params – Sampling parameters for text generation (e.g., {‘temperature’: 0.9, ‘top_p’: 0.95}).
engine_kwargs – The kwargs to pass to the vLLM engine. See documentation for details: https://docs.vllm.ai/en/latest/api/vllm/engine/arg_utils/#vllm.engine.arg_utils.AsyncEngineArgs.
kwargs – Extra keyword arguments.