data_juicer.ops.deduplicator.ray_bts_minhash_cpp_deduplicator module#
- class data_juicer.ops.deduplicator.ray_bts_minhash_cpp_deduplicator.MinhashCalculator(num_hash_aggregators_per_node, num_permutation, num_bands, num_rows_per_band, union_find_parallel_num, text_key, tokenization: str = 'space', window_size: Annotated[int, Gt(gt=0)] = 5, lowercase: bool = True, ignore_pattern: str | None = None, tokenizer_model: str | None = None)[source]#
Bases:
object
- class data_juicer.ops.deduplicator.ray_bts_minhash_cpp_deduplicator.MinhashFilter(num_nodes, union_find_parallel_num, max_pending_filter_tasks, num_filter_task_returns)[source]#
Bases:
object
- class data_juicer.ops.deduplicator.ray_bts_minhash_cpp_deduplicator.RayBTSMinhashCppDeduplicator(*args, **kwargs)[source]#
Bases:
DeduplicatorA basic exact matching deduplicator for RAY. Although its functionality is deduplication, it is implemented as Filter sub-class.
- EMPTY_HASH_VALUE = 'EMPTY'#
- __init__(tokenization: str = 'space', window_size: Annotated[int, Gt(gt=0)] = 5, lowercase: bool = True, ignore_pattern: str | None = None, tokenizer_model: str | None = None, num_permutations: Annotated[int, Gt(gt=0)] = 256, jaccard_threshold: Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Ge(ge=0), Le(le=1)])] = 0.7, num_bands: Annotated[int, Gt(gt=0)] | None = None, num_rows_per_band: Annotated[int, Gt(gt=0)] | None = None, union_find_parallel_num: int | str = 'auto', union_threshold: int | None = 256, max_pending_edge_buffer_task: int | None = 20, num_edge_buffer_task_returns: int | None = 10, max_pending_filter_tasks: int | None = 20, num_filter_task_returns: int | None = 10, merge_batch_size: int | None = 1000, *args, **kwargs)[source]#
Initialization method.
- Parameters:
tokenization – tokenization method for sample texts. It should be one of [space, punctuation, character, sentencepiece]. For English-like languages, we recommend to use ‘space’, for Chinese-like languages, we recommend to use ‘character’, and for multiple languages, we recommend to use ‘sentencepiece’. If using ‘sentencepiece’, please provided the model path in the ‘tokenizer_model’ field.
window_size – window size of shingling
lowercase – whether to convert text to lower case first
ignore_pattern – whether to ignore sub-strings with specific pattern when computing minhash
num_permutations – number of permutations in minhash computing
jaccard_threshold – the min jaccard similarity threshold in near-duplicate detection. When the jaccard similarity of two sample texts is >= this threshold, they are regarded as similar samples and this op will only keep one of them after deduplication
num_bands – number of bands in LSH. Default it’s None, and it will be determined by an optimal params computation algorithm by minimize the weighted sum of probs of False Positives and False Negatives
num_rows_per_band – number of rows in each band in LSH. Default it’s None, and it will be determined by an optimal params computation algorithm
tokenizer_model – path for the sentencepiece model, used for sentencepiece tokenization.