data_juicer.ops.common.dwpose_func 源代码

# Adapted from https://github.com/IDEA-Research/DWPose.git

import math
from typing import List, Tuple

import matplotlib
import numpy as np

from data_juicer.utils.lazy_loader import LazyLoader

torch = LazyLoader("torch")
cv2 = LazyLoader("cv2", "opencv-python")
onnxruntime = LazyLoader("onnxruntime")


[文档] class Wholebody:
[文档] def __init__(self, onnx_det, onnx_pose, device): providers = ["CPUExecutionProvider"] if device == "cpu" else ["CUDAExecutionProvider"] # onnx_det = 'annotator/ckpts/yolox_l.onnx' # onnx_pose = 'annotator/ckpts/dw-ll_ucoco_384.onnx' self.session_det = onnxruntime.InferenceSession(path_or_bytes=onnx_det, providers=providers) self.session_pose = onnxruntime.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
def __call__(self, oriImg): det_result = inference_detector(self.session_det, oriImg) keypoints, scores = inference_pose(self.session_pose, det_result, oriImg) keypoints_info = np.concatenate((keypoints, scores[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:4] = np.logical_and(keypoints_info[:, 5, 2:4] > 0.3, keypoints_info[:, 6, 2:4] > 0.3).astype(int) new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1) mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3] openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17] new_keypoints_info[:, openpose_idx] = new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info keypoints, scores = keypoints_info[..., :2], keypoints_info[..., 2] return keypoints, scores, det_result
[文档] def nms(boxes, scores, nms_thr): """Single class NMS implemented in Numpy.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1 = np.maximum(x1[i], x1[order[1:]]) yy1 = np.maximum(y1[i], y1[order[1:]]) xx2 = np.minimum(x2[i], x2[order[1:]]) yy2 = np.minimum(y2[i], y2[order[1:]]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas[i] + areas[order[1:]] - inter) inds = np.where(ovr <= nms_thr)[0] order = order[inds + 1] return keep
[文档] def multiclass_nms(boxes, scores, nms_thr, score_thr): """Multiclass NMS implemented in Numpy. Class-aware version.""" final_dets = [] num_classes = scores.shape[1] for cls_ind in range(num_classes): cls_scores = scores[:, cls_ind] valid_score_mask = cls_scores > score_thr if valid_score_mask.sum() == 0: continue else: valid_scores = cls_scores[valid_score_mask] valid_boxes = boxes[valid_score_mask] keep = nms(valid_boxes, valid_scores, nms_thr) if len(keep) > 0: cls_inds = np.ones((len(keep), 1)) * cls_ind dets = np.concatenate([valid_boxes[keep], valid_scores[keep, None], cls_inds], 1) final_dets.append(dets) if len(final_dets) == 0: return None return np.concatenate(final_dets, 0)
[文档] def demo_postprocess(outputs, img_size, p6=False): grids = [] expanded_strides = [] strides = [8, 16, 32] if not p6 else [8, 16, 32, 64] hsizes = [img_size[0] // stride for stride in strides] wsizes = [img_size[1] // stride for stride in strides] for hsize, wsize, stride in zip(hsizes, wsizes, strides): xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize)) grid = np.stack((xv, yv), 2).reshape(1, -1, 2) grids.append(grid) shape = grid.shape[:2] expanded_strides.append(np.full((*shape, 1), stride)) grids = np.concatenate(grids, 1) expanded_strides = np.concatenate(expanded_strides, 1) outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides return outputs
[文档] def preprocess_det(img, input_size, swap=(2, 0, 1)): if len(img.shape) == 3: padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114 else: padded_img = np.ones(input_size, dtype=np.uint8) * 114 r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img padded_img = padded_img.transpose(swap) padded_img = np.ascontiguousarray(padded_img, dtype=np.float32) return padded_img, r
[文档] def inference_detector(session, oriImg): input_shape = (640, 640) img, ratio = preprocess_det(oriImg, input_shape) ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]} output = session.run(None, ort_inputs) predictions = demo_postprocess(output[0], input_shape)[0] boxes = predictions[:, :4] scores = predictions[:, 4:5] * predictions[:, 5:] boxes_xyxy = np.ones_like(boxes) boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0 boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0 boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0 boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0 boxes_xyxy /= ratio dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1) if dets is not None: final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5] isscore = final_scores > 0.3 iscat = final_cls_inds == 0 isbbox = [i and j for (i, j) in zip(isscore, iscat)] final_boxes = final_boxes[isbbox] else: final_boxes = np.array([]) return final_boxes
[文档] def preprocess_pose( img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256) ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """Do preprocessing for RTMPose model inference. Args: img (np.ndarray): Input image in shape. input_size (tuple): Input image size in shape (w, h). Returns: tuple: - resized_img (np.ndarray): Preprocessed image. - center (np.ndarray): Center of image. - scale (np.ndarray): Scale of image. """ # get shape of image img_shape = img.shape[:2] out_img, out_center, out_scale = [], [], [] if len(out_bbox) == 0: out_bbox = [[0, 0, img_shape[1], img_shape[0]]] for i in range(len(out_bbox)): x0 = out_bbox[i][0] y0 = out_bbox[i][1] x1 = out_bbox[i][2] y1 = out_bbox[i][3] bbox = np.array([x0, y0, x1, y1]) # get center and scale center, scale = bbox_xyxy2cs(bbox, padding=1.25) # do affine transformation resized_img, scale = top_down_affine(input_size, scale, center, img) # normalize image mean = np.array([123.675, 116.28, 103.53]) std = np.array([58.395, 57.12, 57.375]) resized_img = (resized_img - mean) / std out_img.append(resized_img) out_center.append(center) out_scale.append(scale) return out_img, out_center, out_scale
[文档] def inference(sess: onnxruntime.InferenceSession, img: np.ndarray) -> np.ndarray: """Inference RTMPose model. Args: sess (onnxruntime.InferenceSession): ONNXRuntime session. img (np.ndarray): Input image in shape. Returns: outputs (np.ndarray): Output of RTMPose model. """ all_out = [] # build input for i in range(len(img)): input = [img[i].transpose(2, 0, 1)] # build output sess_input = {sess.get_inputs()[0].name: input} sess_output = [] for out in sess.get_outputs(): sess_output.append(out.name) # run model outputs = sess.run(sess_output, sess_input) all_out.append(outputs) return all_out
[文档] def postprocess( outputs: List[np.ndarray], model_input_size: Tuple[int, int], center: Tuple[int, int], scale: Tuple[int, int], simcc_split_ratio: float = 2.0, ) -> Tuple[np.ndarray, np.ndarray]: """Postprocess for RTMPose model output. Args: outputs (np.ndarray): Output of RTMPose model. model_input_size (tuple): RTMPose model Input image size. center (tuple): Center of bbox in shape (x, y). scale (tuple): Scale of bbox in shape (w, h). simcc_split_ratio (float): Split ratio of simcc. Returns: tuple: - keypoints (np.ndarray): Rescaled keypoints. - scores (np.ndarray): Model predict scores. """ all_key = [] all_score = [] for i in range(len(outputs)): # use simcc to decode simcc_x, simcc_y = outputs[i] keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio) # rescale keypoints keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2 all_key.append(keypoints[0]) all_score.append(scores[0]) return np.array(all_key), np.array(all_score)
[文档] def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.0) -> Tuple[np.ndarray, np.ndarray]: """Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (left, top, right, bottom) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2) """ # convert single bbox from (4, ) to (1, 4) dim = bbox.ndim if dim == 1: bbox = bbox[None, :] # get bbox center and scale x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3]) center = np.hstack([x1 + x2, y1 + y2]) * 0.5 scale = np.hstack([x2 - x1, y2 - y1]) * padding if dim == 1: center = center[0] scale = scale[0] return center, scale
def _fix_aspect_ratio(bbox_scale: np.ndarray, aspect_ratio: float) -> np.ndarray: """Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, ) """ w, h = np.hsplit(bbox_scale, [1]) bbox_scale = np.where(w > h * aspect_ratio, np.hstack([w, w / aspect_ratio]), np.hstack([h * aspect_ratio, h])) return bbox_scale def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: """Rotate a point by an angle. Args: pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) angle_rad (float): rotation angle in radian Returns: np.ndarray: Rotated point in shape (2, ) """ sn, cs = np.sin(angle_rad), np.cos(angle_rad) rot_mat = np.array([[cs, -sn], [sn, cs]]) return rot_mat @ pt def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray: """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): The 1st point (x,y) in shape (2, ) b (np.ndarray): The 2nd point (x,y) in shape (2, ) Returns: np.ndarray: The 3rd point. """ direction = a - b c = b + np.r_[-direction[1], direction[0]] return c
[文档] def get_warp_matrix( center: np.ndarray, scale: np.ndarray, rot: float, output_size: Tuple[int, int], shift: Tuple[float, float] = (0.0, 0.0), inv: bool = False, ) -> np.ndarray: """Calculate the affine transformation matrix that can warp the bbox area in the input image to the output size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) Returns: np.ndarray: A 2x3 transformation matrix """ shift = np.array(shift) src_w = scale[0] dst_w = output_size[0] dst_h = output_size[1] # compute transformation matrix rot_rad = np.deg2rad(rot) src_dir = _rotate_point(np.array([0.0, src_w * -0.5]), rot_rad) dst_dir = np.array([0.0, dst_w * -0.5]) # get four corners of the src rectangle in the original image src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale * shift src[1, :] = center + src_dir + scale * shift src[2, :] = _get_3rd_point(src[0, :], src[1, :]) # get four corners of the dst rectangle in the input image dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) if inv: warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return warp_mat
[文档] def top_down_affine( input_size: dict, bbox_scale: dict, bbox_center: dict, img: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: """Get the bbox image as the model input by affine transform. Args: input_size (dict): The input size of the model. bbox_scale (dict): The bbox scale of the img. bbox_center (dict): The bbox center of the img. img (np.ndarray): The original image. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: img after affine transform. - np.ndarray[float32]: bbox scale after affine transform. """ w, h = input_size warp_size = (int(w), int(h)) # reshape bbox to fixed aspect ratio bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h) # get the affine matrix center = bbox_center scale = bbox_scale rot = 0 warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h)) # do affine transform img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR) return img, bbox_scale
[文档] def get_simcc_maximum(simcc_x: np.ndarray, simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Get maximum response location and value from simcc representations. Note: instance number: N num_keypoints: K heatmap height: H heatmap width: W Args: simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx) simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy) Returns: tuple: - locs (np.ndarray): locations of maximum heatmap responses in shape (K, 2) or (N, K, 2) - vals (np.ndarray): values of maximum heatmap responses in shape (K,) or (N, K) """ N, K, Wx = simcc_x.shape simcc_x = simcc_x.reshape(N * K, -1) simcc_y = simcc_y.reshape(N * K, -1) # get maximum value locations x_locs = np.argmax(simcc_x, axis=1) y_locs = np.argmax(simcc_y, axis=1) locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32) max_val_x = np.amax(simcc_x, axis=1) max_val_y = np.amax(simcc_y, axis=1) # get maximum value across x and y axis mask = max_val_x > max_val_y max_val_x[mask] = max_val_y[mask] vals = max_val_x locs[vals <= 0.0] = -1 # reshape locs = locs.reshape(N, K, 2) vals = vals.reshape(N, K) return locs, vals
[文档] def decode(simcc_x: np.ndarray, simcc_y: np.ndarray, simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]: """Modulate simcc distribution with Gaussian. Args: simcc_x (np.ndarray[K, Wx]): model predicted simcc in x. simcc_y (np.ndarray[K, Wy]): model predicted simcc in y. simcc_split_ratio (int): The split ratio of simcc. Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2) - np.ndarray[float32]: scores in shape (K,) or (n, K) """ keypoints, scores = get_simcc_maximum(simcc_x, simcc_y) keypoints /= simcc_split_ratio return keypoints, scores
[文档] def inference_pose(session, out_bbox, oriImg): h, w = session.get_inputs()[0].shape[2:] model_input_size = (w, h) resized_img, center, scale = preprocess_pose(oriImg, out_bbox, model_input_size) outputs = inference(session, resized_img) keypoints, scores = postprocess(outputs, model_input_size, center, scale) return keypoints, scores
[文档] def smart_resize(x, s): Ht, Wt = s if x.ndim == 2: Ho, Wo = x.shape Co = 1 else: Ho, Wo, Co = x.shape if Co == 3 or Co == 1: k = float(Ht + Wt) / float(Ho + Wo) return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) else: return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
[文档] def smart_resize_k(x, fx, fy): if x.ndim == 2: Ho, Wo = x.shape Co = 1 else: Ho, Wo, Co = x.shape Ht, Wt = Ho * fy, Wo * fx if Co == 3 or Co == 1: k = float(Ht + Wt) / float(Ho + Wo) return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4) else: return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
[文档] def padRightDownCorner(img, stride, padValue): h = img.shape[0] w = img.shape[1] pad = 4 * [None] pad[0] = 0 # up pad[1] = 0 # left pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right img_padded = img pad_up = np.tile(img_padded[0:1, :, :] * 0 + padValue, (pad[0], 1, 1)) img_padded = np.concatenate((pad_up, img_padded), axis=0) pad_left = np.tile(img_padded[:, 0:1, :] * 0 + padValue, (1, pad[1], 1)) img_padded = np.concatenate((pad_left, img_padded), axis=1) pad_down = np.tile(img_padded[-2:-1, :, :] * 0 + padValue, (pad[2], 1, 1)) img_padded = np.concatenate((img_padded, pad_down), axis=0) pad_right = np.tile(img_padded[:, -2:-1, :] * 0 + padValue, (1, pad[3], 1)) img_padded = np.concatenate((img_padded, pad_right), axis=1) return img_padded, pad
[文档] def transfer(model, model_weights): transfered_model_weights = {} for weights_name in model.state_dict().keys(): transfered_model_weights[weights_name] = model_weights[".".join(weights_name.split(".")[1:])] return transfered_model_weights
[文档] def draw_bodypose(canvas, candidate, subset): H, W, C = canvas.shape candidate = np.array(candidate) subset = np.array(subset) stickwidth = 4 limbSeq = [ [2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18], ] colors = [ [255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], ] for i in range(17): for n in range(len(subset)): index = subset[n][np.array(limbSeq[i]) - 1] if -1 in index: continue Y = candidate[index.astype(int), 0] * float(W) X = candidate[index.astype(int), 1] * float(H) mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(canvas, polygon, colors[i]) canvas = (canvas * 0.6).astype(np.uint8) for i in range(18): for n in range(len(subset)): index = int(subset[n][i]) if index == -1: continue x, y = candidate[index][0:2] x = int(x * W) y = int(y * H) cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1) return canvas
[文档] def draw_handpose(canvas, all_hand_peaks): H, W, C = canvas.shape edges = [ [0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20], ] for peaks in all_hand_peaks: peaks = np.array(peaks) eps = 0.01 for ie, e in enumerate(edges): x1, y1 = peaks[e[0]] x2, y2 = peaks[e[1]] x1 = int(x1 * W) y1 = int(y1 * H) x2 = int(x2 * W) y2 = int(y2 * H) if x1 > eps and y1 > eps and x2 > eps and y2 > eps: cv2.line( canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2, ) for i, keyponit in enumerate(peaks): x, y = keyponit x = int(x * W) y = int(y * H) if x > eps and y > eps: cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1) return canvas
[文档] def draw_facepose(canvas, all_lmks): H, W, C = canvas.shape for lmks in all_lmks: lmks = np.array(lmks) eps = 0.01 for lmk in lmks: x, y = lmk x = int(x * W) y = int(y * H) if x > eps and y > eps: cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1) return canvas
# detect hand according to body pose keypoints # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
[文档] def handDetect(candidate, subset, oriImg): # right hand: wrist 4, elbow 3, shoulder 2 # left hand: wrist 7, elbow 6, shoulder 5 ratioWristElbow = 0.33 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): # if any of three not detected has_left = np.sum(person[[5, 6, 7]] == -1) == 0 has_right = np.sum(person[[2, 3, 4]] == -1) == 0 if not (has_left or has_right): continue hands = [] # left hand if has_left: left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]] x1, y1 = candidate[left_shoulder_index][:2] x2, y2 = candidate[left_elbow_index][:2] x3, y3 = candidate[left_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, True]) # right hand if has_right: right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]] x1, y1 = candidate[right_shoulder_index][:2] x2, y2 = candidate[right_elbow_index][:2] x3, y3 = candidate[right_wrist_index][:2] hands.append([x1, y1, x2, y2, x3, y3, False]) for x1, y1, x2, y2, x3, y3, is_left in hands: # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]); # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]); # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow); # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder); # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder); x = x3 + ratioWristElbow * (x3 - x2) y = y3 + ratioWristElbow * (y3 - y2) distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2) distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder) # x-y refers to the center --> offset to topLeft point # handRectangle.x -= handRectangle.width / 2.f; # handRectangle.y -= handRectangle.height / 2.f; x -= width / 2 y -= width / 2 # width = height # overflow the image if x < 0: x = 0 if y < 0: y = 0 width1 = width width2 = width if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) # the max hand box value is 20 pixels if width >= 20: detect_result.append([int(x), int(y), int(width), is_left]) """ return value: [[x, y, w, True if left hand else False]]. width=height since the network require squared input. x, y is the coordinate of top left """ return detect_result
# Written by Lvmin
[文档] def faceDetect(candidate, subset, oriImg): # left right eye ear 14 15 16 17 detect_result = [] image_height, image_width = oriImg.shape[0:2] for person in subset.astype(int): has_head = person[0] > -1 if not has_head: continue has_left_eye = person[14] > -1 has_right_eye = person[15] > -1 has_left_ear = person[16] > -1 has_right_ear = person[17] > -1 if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear): continue head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]] width = 0.0 x0, y0 = candidate[head][:2] if has_left_eye: x1, y1 = candidate[left_eye][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 3.0) if has_right_eye: x1, y1 = candidate[right_eye][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 3.0) if has_left_ear: x1, y1 = candidate[left_ear][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 1.5) if has_right_ear: x1, y1 = candidate[right_ear][:2] d = max(abs(x0 - x1), abs(y0 - y1)) width = max(width, d * 1.5) x, y = x0, y0 x -= width y -= width if x < 0: x = 0 if y < 0: y = 0 width1 = width * 2 width2 = width * 2 if x + width > image_width: width1 = image_width - x if y + width > image_height: width2 = image_height - y width = min(width1, width2) if width >= 20: detect_result.append([int(x), int(y), int(width)]) return detect_result
# get max index of 2d array
[文档] def npmax(array): arrayindex = array.argmax(1) arrayvalue = array.max(1) i = arrayvalue.argmax() j = arrayindex[i] return i, j
[文档] def draw_pose(pose, H, W): bodies = pose["bodies"] faces = pose["faces"] hands = pose["hands"] candidate = bodies["candidate"] subset = bodies["subset"] canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) canvas = draw_bodypose(canvas, candidate, subset) canvas = draw_handpose(canvas, hands) canvas = draw_facepose(canvas, faces) return canvas
[文档] class DWposeDetector:
[文档] def __init__(self, onnx_det, onnx_pose, device): self.pose_estimation = Wholebody(onnx_det, onnx_pose, device)
def __call__(self, oriImg): oriImg = oriImg.copy() H, W, C = oriImg.shape with torch.no_grad(): candidate, subset, det_result = self.pose_estimation(oriImg) nums, keys, locs = candidate.shape candidate[..., 0] /= float(W) candidate[..., 1] /= float(H) body = candidate[:, :18].copy() ori_body = body body = body.reshape(nums * 18, locs) score = subset[:, :18] for i in range(len(score)): for j in range(len(score[i])): if score[i][j] > 0.3: score[i][j] = int(18 * i + j) else: score[i][j] = -1 un_visible = subset < 0.3 candidate[un_visible] = -1 foot = candidate[:, 18:24] faces = candidate[:, 24:92] hands = candidate[:, 92:113] hands = np.vstack([hands, candidate[:, 113:]]) bodies = dict(candidate=body, subset=score) pose = dict(bodies=bodies, hands=hands, faces=faces) return ori_body, foot, faces, hands, det_result, draw_pose(pose, H, W)